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Why$should$you$care$about$accurate$PSF’s?$

•  Get$accurate$shapes$of$galaxies$to$do$cosmology!$
•  My!biased!view!comes!from!working!on!doing!weak!lensing!on!

large!surveys,!but!there!are!there!may!be!other!poten;al!
applica;ons:!
–  Photometry!in!crowded!regions!
–  Low!surface!brightness!or!barely!resolved!galaxies!!
–  Galaxy!morphology!
–  Accurate!astrometry!

•  The!CFHTLens!collabora;on!rejected!25%!of!their!data!due!to!high!
starKgalaxy!shape!correla;on.!!Source!of!systema;c!error!was!
unknown.!!
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What$are$the$important$factors$

•  Op;cal!distor;ons,!abbera;ons!
•  Atmosphere!
•  Astrometry!
•  BrighterKFaPer!
•  Edge!distor;ons!
•  Tree!rings!
•  Charge!transfer!efficiency!
•  Sampling!
•  Chroma;c!Effects!

If!we!can!model!some!these!(WCS,!chroma;city)!before!we!try!to!
deal!with!the!PSF,!it!makes!our!life!easier.!
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PSF$Reconstruc.on$

•  Use!stars!in!the!field!to!measure!samples!of!the!PSF!
•  PSF!Models!

–  Analy;c!form!(shapelet,!wavelet,!Gaussian)!
–  Pixel!basis!
–  Principal!component!analysis!(PCA)!

•  PSF!Interpola;on!
–  Polynomial!
–  PCA!
–  Gaussian!process!
–  Kriging!

•  A!majority!of!weak!lensing!analyses!have!used!some!combina;on!
of!PCA!and!polynomial!interpola;on!with!PCA!or!pixel!basis.!



PACCD Meeting, December 4-5 2014, BNL 

Limita.ons$

•  Poten;ally!many!free!parameters!!
•  How!do!you!choose!the!op;mal!number!of!basis!func;ons!
•  Polynomial!

–  Assume!data!varies!smoothly,!cannot!capture!high!frequency!
varia;ons?!

•  Limita;ons!to!generic!PCA!
–  Missing!data!and!outliers!
–  Does!not!produce!a!genera;ve!model!
–  Assumes!GaussianKLinear!model!

•  Varia;ons!to!standard!polynomial!and!PCA!interpola;on!can!
accommodate!some!of!these!issues.!!
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How$well$do$we$need$to$know$the$PSF?$

•  Depends!on!par;cular!science!applica;on!
•  Weak!lensing!Survey!requirements:!

–  Euclid,!HSC,!DES,!LSST!have!goals!to!reach!accuracy!of!size!and!
ellip;city!to!a!few!tenths!of!a!percent.!

For full 5 year DES survey factors reduce to 
PSF ellipticity -> 1.2 x 10-3 

PSF size -> 3.1 x 10-3 ()  

4 PSF correction residuals

4.1 PSF model errors

Let us now consider galaxies images which are observed after convolution with a PSF with
an ellipticity ✏p,i and RMS size Rp. For unweighted moments (i.e. setting w = 1 in Eq. 6),
[3] have shown that the error �✏i in the galaxy ellipticity ✏i arising from the error �✏p,i in the
PSF model ellipticity and the error �(R2

p) in the square size of the PSF model is given by
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Using this expression and neglecting some cross-correlations (see list in paper), [3] further
showed that the resulting systematics variance is given by
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Assuming an equal share of the systematics variance for each of the two terms in the above
equation, the DES SV requirements for �2

sys

(Eq. 2) yield
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For the full DES surveys (see §1), these requirements become h|�✏p|
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4.2 PSF leakage

Adopting a more phenomenological approach, let’s assume that the observed galaxy ellipticity
can be written as

✏

0
i = ✏i + ↵✏p,i, (20)

where ✏i is the true galaxy ellipticity, ✏p,i is the PSF ellipticity as above and ↵ is a PSF leakage
parameter. It is easy to show that the resulting systematic variance is given by
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Cosmic shear requirements for DES  
 

Error in PSF ellipticity  

Error in PSF size  
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Modeling$the$op.cs$

•  Fairly!straigh`orward!to!simulate!PSF!due!to!telescope!
misalignment,!aberra;ons!using!eg.!Zemax!models.!

•  Wavefront!data!can!help!constrain!real!data.!

Defining a weak lensing experiment 3119

Figure 6. Left: the difference between the known ellipticity and the modelled one as a function of the number of principal components used for the modelling.
The diamonds represent the standard deviation of the residual error considering the spatial variations of the PSF over the field of view, the triangles represent
the standard deviation of the residual error considering the variations of the PSF arising from variations in the instrumental state and the squares represent the
standard deviation of the residual error considering both together. Right: as, for the left-hand panel, but with the diamonds representing the standard deviation
of the residual error considering simultaneously the wavelength dependence together with all of the variations of the PSF over the field of view and the stability
of the telescope. The dashed line indicates the value assigned in Table 1.

4.2.6 Bayesian model fitting

Having explored the approximate number of eigenmodes that
may be required to construct the PSF, we now examine whether
the Bayesian approach discussed above can provide sufficient
information on the coefficients of this component set for re-
constructing the PSF in realistic simulations, to meet the al-
locations in Table 1. For this purpose, a conservative assump-
tion is to limit the amount of temporal stability required and
hence to analyse each set of exposures of a region of sky in-
dependently of any other field. The aim is to investigate the
extent to which the underlying, fully sampled PSF may be re-
constructed from noisy data in a single field. We do, however,
assume that each field is observed with three dithered exposures,
and that the PSF is invariant during those dithered exposures.

The first step of this reconstruction is to define the set of basis
model components that characterize the system using normal mode
decomposition as described in earlier sections. We then fit these
components to noisy realizations of stars. The star profiles are taken
in turn from the set of model PSFs, but excluding that profile from
the determination of the components of the models above. As before,
the PSF used in this analysis is the Euclid system PSF taking into
account the optomechanical, detector and attitude control system
pointing variation contributions. Provided the information on the
pointing variation is telemetered by the spacecraft, the effect of
this uncertainty on the PSF may be corrected, to a certain level
of accuracy. On the other hand, we could proceed without this
information, and then the guiding errors would need to be included
as additional fit parameters. For this test, it is assumed that the CTI
has been fully corrected in prior data processing (e.g. Massey et al.
2010): the efficacy of this is described in Section 4.3.

The simulation uses the Besançon model of the Milky Way
(Robin et al. 2003) to predict the number–magnitude relation of
stars at the North Ecliptic Pole in the Canada-France-Hawaii Tele-
scope system i band.5 There are 3.5 stars arcmin−2 in the range

5 http://model.obs-besancon.fr/

18 < i < 23, and 6300 stars in a half square degree, corresponding
to the Euclid full field of view. The Besançon model also allows
the creation of a simulated catalogue of stars with magnitude and
spectral type, and to create the simulated Euclid observations, stars
were randomly selected from that catalogue. As the stellar PSFs
used in the PSF modelling are all moderate or high signal-to-noise
ratio, their colours will often be known from catalogues, such as
that which ESA’s Gaia mission will produce. Here, we assume that
their optical and near-infrared magnitudes can be measured from
the Euclid mission data alone. To model the PSF in the presence of
the varying colours of stars, a simple model was assumed for the
PSF wavelength dependence, in which the optics component alone
was assumed to scale in angular scale linearly with wavelength,
with respect to simulated PSFs calculated for wavelength 800 nm.
While this model is an oversimplification of the true wavelength
dependence, it serves to capture the basic effect and allows us to
test whether, in principle, the PSF could be reconstructed at the
required level of accuracy. Simulated stars were created by dividing
the Euclid visible instrument passband into small wavelength in-
tervals, evaluating the expected number of detected photoelectrons
in each wavelength interval, given the SED of each simulated star,
and coadding the wavelength-stretched PSFs across the bandpass
with wavelength-dependent weight given by that number of photo-
electrons. Star SEDs were obtain from the ‘UVK’ library of Pickles
(1998).6 In the measurement/fitting test, stars were assumed to have
noisy photometric measurements, from which an estimated SED
was evaluated using the same stellar library (i.e. assuming that star
SEDs may be obtained from broad-band photometry without sys-
tematic error), and PSF eigenmodes were adapted to the SED of
each star using the same SED-weighting procedure that was used to
create the simulated observations. The model PSFs and simulated
stars are not expected to match exactly because of the introduction
of photon shot noise in the simulated stars. It was further assumed

6 http://www.ifa.hawaii.edu/users/pickles/AJP/hilib.html
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Figure 4. Components (left) and residuals (right) depending on number of components used for modelling a PSF (top). The intensity scales are logarithmic,
with a colour table which enhances lower image levels.

optical train. Hence, the ‘time’ dimension in Fig. 3 can be replaced
with a separate dimension for each parameter. Some of these (such
as the primary–secondary mirror separation in the telescope, lead-
ing to focus changes, examined by Ma et al. 2008) will, however, be
dominant, and not all physical changes will induce ellipticity, so in
practice the additional dimensionality should be constrained. The
additional dimensionality beyond the two dimensions of the focal
plane reduces the accuracy with which the PSF can be constructed,
but with typically >109 suitable stars in a long survey duration,
even a large number of additional dimensions can be accommo-
dated. Then in principle all of the exposures in the survey can be
used, and a multitude of PSFs will be available to construct the PSF
for any galaxy.

4.2.3 Principal component analysis of the PSF

Any PSF can be modelled through a combination of functional
forms. Which functional forms are optimal will depend on the cri-
teria by which this is assessed. One simple criterion may be that
each of the components making up the PSF should be orthogonal;
another may be that a minimal set should be used, requiring that the
series of components should converge rapidly.

Principal component analysis (PCA) is a general statistical
method that enables variation in data to be identified in a way
that makes minimal assumptions about the nature of the underlying
variation. More formally, the PCA methodology is a mathemati-
cal procedure that uses orthogonal transformations to convert a set
of correlated variables into a set of uncorrelated variables called
principal components. PCA also determines the coefficients which
describe how much of each component should be used.

PCA makes the assumption that modes of variation are additive.
This may be restrictive when changes in PSF result from, for ex-
ample, focus variation, so other, more physically described models,

such as those directly coupled to the optical modes (e.g. Schechter
& Sobel Levinson 2011), may be more efficient.

In applying PCA, we may consider the input data to be the PSFs
provided by stars, and the input (correlated) variables to be the
position of the PSF in the field of view, the SED of the photons
in the bandpass and the parameters describing the instrument state
(such as the focus). Each component of the PCA basis set derived
from the PSF is an image, and the components together generate
an orthogonal set of two-dimensional images. This is illustrated in
Fig. 4. As there is a coefficient for each component to instruct how
much of that coefficient should be used in the construction of a PSF,
the coefficients are vector functions, with length corresponding to
the numbers of PCA components. The dependences in the derived
component functions are the positions in the focal plane, the SED
and the instrument state.

PCA PSF reconstruction has been successfully implemented on
space-based weak lensing data from the HST (Jee et al. 2007) (see
also Rhodes et al. 2007 and Schrabback et al. 2007, 2010 who used
PCA to characterize the variation of the two-component ellipticity,
rather than the PSF pixel values). We could use the stellar (noisy,
pixellized) images themselves to generate the PCA components and
coefficients. As described in Section 4.2.1, the problem with under-
sampled data is that Fourier modes above the Nyquist sampling
limit are not only lost, but are aliased to lower frequencies, result-
ing in corruption of all Fourier modes. The apparent shape of the
PSF depends on the subpixel location with respect to the detector
pixel grid, and no linear interpolation scheme can allow us to pre-
dict the PSF at one location, given its form at another. The effect
of undersampling is to corrupt the PCA component calculation to
make them no longer orthogonal, and the presence of noise results
in spuriously high coefficients, particularly at higher order eigen-
modes. While this may be mitigated by the use of multiple, dithered
exposures, in the presence of noise, it may not be possible to make a
unique, method-independent reconstruction of a fully sampled PSF.

 at Princeton U
niversity on N

ovem
ber 26, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

Image Credit: Cropper et. al. 2012 

Principal Components from Euclid Simulations 
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Modeling$the$Atmosphere$

•  Atmospheric!component!scales!as!(Exposure!Time)K1/2!

•  Will!be!challenging!for!surveys!with!high!cadence!like!LSST!to!
model!this!component.!!Current!focus!has!been!in!using!
simula;ons!to!model!effects!of!the!atmosphere.!! Atmospheric distortions 385

Figure 4. The evolution with an exposure time of the atmospheric turbu-
lence as measured by the two-point correlation function ξ+ at two different
angular scales; 0.7 arcmin (black upper) and 4.9 arcmin (red lower). The
best-fitting de Vries et al. (2007) prediction is shown dot–dashed for each
angular scale. This can be compared to the two pairs of thick horizontal
bars overplotted for each angular scale. These bars indicate the expected
CFHTLenS cosmological signal for two tomographic bins with a mean
redshift z = 0.37 and 0.54, determining the exposure time below which
the cosmological signal becomes lower than the residual atmospheric PSF
signal.

3.2 Dependence of the amplitude of the atmospheric distortion
on exposure time

A key result from the simulations of de Vries et al. (2007) showed
that the ellipticity introduced by atmospheric aberrations decreases
with time as t−1/2, assuming a constant wind speed. The two-point
correlation function of the atmospheric variations ξ+ is therefore
expected to decrease in amplitude as t−1. Fig. 4 shows the average
two-point correlation function |ξ+| as a function of the exposure
time. Results are shown for two representative angular scales with
ξ+ measured at θ = 0.7 arcmin (upper), where the von Kármán
atmospheric turbulence model provides a good fit to the data, and
at θ = 4.9 arcmin, which corresponds to the first negative dip in the
correlation function. We find that the de Vries et al. (2007) model
(shown as dot–dashed) is a good fit to the data, but note that for
this analysis, we were unable to select a significant sample size
of exposures with a constant wind speed as is assumed in the de
Vries et al. (2007) theory. We conclude that the scatter we see in the
results must be in part driven by the range of wind speeds within
our sample.

Fig. 4 also allows us to compare the amplitude of the atmospheric
turbulence to the expected cosmological signal in the CFHT Lensing
Survey (CFHTLenS1). For both angular scales θ shown, we over-
plot two horizontal bars that indicate the amplitude of the two-point
shear correlation function ξ+(θ ) for two low-redshift tomographic
bins with a mean redshift of z = 0.37 and 0.54, assuming a 7-
year Wilkinson Microwave Anisotropy Probe (WMAP7) cosmology
(Komatsu et al. 2011). We should note here that one cannot di-
rectly relate the PSF ellipticity correlation with that expected from
shear, as the effect of the PSF on the shear measurement depends
on the relative size of the galaxy such that it would be negligible
for large galaxies or potentially amplified for galaxies comparable
to or smaller than the PSF (Paulin-Henriksson et al. 2008). This

1 CFHTLenS analyses data from the CFHT Legacy Survey, using both the
Wide, Deep and Pre-imaging surveys.

comparison does, however, demonstrate that even for the lowest
redshift tomographic bin, the residual systematic error from atmo-
spheric turbulence is well below the cosmological signal for the
600-s CFHTLenS exposures.

3.3 Dependence on wind speed and direction

In order to compare the turbulence patterns observed to the wind
direction, we quantify the direction of the atmospheric turbulence
using correlation as a function of vector separation and direction
on the sky, rather than the commonly used, azimuthally averaged
functions ξ+(θ ) = ξ+(|θ |). We calculate the ξ+ residual correla-
tion as a function of vector angular separation θ using the discrete
Fourier transform to find the power spectrum of the δε1 and δε2

images (examples of which are shown in Fig. 1), then employing
the Wiener–Khinchin theorem to generate images of ξ+(θ ).

Four example results are shown in Fig. 5 revealing a non-isotropic
function. The example exposure shown in Fig. 1 is the same as
presented in the upper right-hand panel of Fig. 5. A comparison of
these two figures shows that the elliptical ξ+(|θ |) has a central dipole
with a major axis along the direction of the ripples seen in the δεi

maps of Fig. 1. For other exposures, however, we see what appears to
be a superposition of ripple patterns (see for example the upper left
and lower right panels of Fig. 5), potentially arising from different
turbulent layers in the atmosphere. In these cases, the orientation
of the central dipole indicates the average ripple direction. Based
on these comparisons over the full data set, we use the orientation
of the central dipole to determine an effective ripple orientation,
and we measure this orientation using the quadrupole moments in
equation (2) with rg = 2.3 arcmin. Applying this method to all
exposures with t ≤ 74 s, where the amplitude of the atmospheric
turbulence is sufficiently high, we can then compare this ripple
direction to the wind direction relative to the image (shown by

Figure 5. The ξ+ residual correlation as a function of 2D vector separation
θ for four example 74-s exposures. The dominant direction of the PSF
residuals can be compared to the wind direction shown as an arrow inset.
The upper left panel shows an example exposure with a wind speed of
14 ms−1. The upper right panel shows the exposure shown in Fig. 1 and has
a wind speed of 6 ms−1. The lower left panel has a wind speed of 2 ms−1

and the lower right panel has a wind speed of 11 ms−1.

C© 2012 The Authors, MNRAS 421, 381–389
Monthly Notices of the Royal Astronomical Society C© 2012 RAS
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Residual-Residual 
correlation after polynomial 
has been subtracted 

Image Credit: Heymans et. al. 2012 
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Star$Selec.on$

•  Longer!exposures!mean:!!
–  More!stars!are!saturated!
–  More!stars!are!blended!
–  Can!push!to!lower!S/N,!but!
need!to!worry!about!noisy!
measurements!and!bias.!

•  Can!we!use!barely!resolved!
galaxies!from!mul;ple!
exposures?!!

•  Combine!with!external!
informa;on?!

Typical 300 sec  
survey exposure for HSC 
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More$sophis.cated$interpola.on$techniques$

Atmospheric PSF Interpolation for Weak Lensing 11

Figure 7. Median correlation function of the PSF ellipticity
model errors of 100 different PSF patterns, at the “typical” stellar
density of 1/arcmin2. The results are shown for psfent (red), 5th-
order polynomial fitting (green) and 5⇥5 boxcar filtering (blue).
The error bars indicate the rms spread in the 100 exposures di-
vided by

p
100. Hollowed labels indicate negative values.

�["
PSF

] �̃2

sys,PSF

F
sys

psfent 7.41⇥10�3 2.41⇥10�6 4.39⇥10�2

Polynomial 8.93 ⇥10�3 8.67⇥10�6 10.87⇥10�2

Boxcar 9.51 ⇥10�3 16.77⇥10�6 18.54⇥10�2

Table 1. Median metric �["
PSF

] and �̃2

sys,PSF

for the three PSF
interpolation techniques for 100 different PSF patterns sampled
at the nominal stellar density of 1/arcmin2. The final column
F
sys

is a measure of the level of the spatial correlations in the
PSF model errors, independent of the absolute errors.

errors, but in the fact that the flexible free-form model cre-
ates makes errors less correlated in space, which is an impor-
tant property for measurements like cosmic shear, where the
main signal is embedded in the spatial correlation of galaxy
shapes.

5.2 Variation with stellar density

Having examined the performance of the three PSF inter-
polation methods on a “typical” field, we would now like to
understand how the three PSF interpolation schemes are af-
fected by the available density of stars (we explore the range
from 0.25 to 4 stars per arcmin2 for a complete sample of
realistic stellar distributions). This test is especially impor-
tant for images at high galactic latitude, where stars are
very sparse. The ability to reconstruct the PSF variation
at these fields may increase the effective area of a survey
and therefore its statistical power. Figure 8 shows, for the
PSF pattern in Figure 5 (b), how the PSF model improves,
for the three interpolation methods, as the stellar density
increases. Figure 9 shows how the residual ellipticity corre-
lation in each case changes accordingly.

Figure 8 visually illustrates one example of how the
three different interpolation methods respond to the in-
creased available stellar data points. We observe that the
polynomial models appear to be particularly ill behaved
when the available stars are under-dense (a) and over-dense
(c). This is an example of imposing an improper prior as-

sumption about the PSF pattern while ignoring the data.
In contrast, the simple boxcar smoothing technique works
in the opposite direction, where the model is purely driven
by data with essentially no assumption on the expected PSF
patterns. As a result, the models are just reflecting the avail-
able data, where we get a model with no structure in the
under-dense case (a), and a model with lots of small scale
structure in the over-dense case (c). psfent is effectively a
more sophisticated version of the boxcar smoothing with in-
formative priors and multiple structure scales. The change
from (a) to (c) for the psfent model is qualitatively similar
to the boxcar smoothing, as it is primarily dictated by data.
But when data is insufficient, as in (a), psfent does not
generate entirely flat models like boxcar smoothing, rather,
we can see traces of the psfent priors creating some struc-
ture in the PSF model. When the stellar data is abundant
(c), psfent lets data take over to drive the fit and only
makes sure that the model stays in a physically reasonable
range as specified by the priors. Figure 9 confirms the above
observation more quantitatively.

In Figure 10, we show for our 100 different atmosphere
realisations the median �["

PSF

] and �̃

2

sys,PSF

statistics as a
function of stellar density. In all stellar densities, psfent

consistently performs ⇠ 20% better in �["

PSF

] and 3–10
times better in �̃

2

sys,PSF

compared to boxcar smoothing and
polynomial fitting.

The two statistics show similar trends in general. As we
explained earlier, for psfent and boxcar smoothing, since
the model is primarily driven by data, the model improves
monotonically as more data becomes available. The 20%
and nearly 4-times improvement of psfent in �["

PSF

] and
�̃

2

sys,PSF

respectively compared to boxcar smoothing mainly
comes from psfent’s ability to capture multi-scale struc-
tures and regulate the model using priors so that noise does
not get amplified. A fixed order polynomial function, on
the other hand, when optimised for a certain stellar density
(1/arcmin

2), over-fits (Figure 8 (c)) or under-fits (Figure 8
(a)) data when the stellar density varies, which results in
a local minimum in the two green curves. The polynomial
model, when optimised, is a reasonably good description of
the smooth variation in the large-scale PSF patterns, but
still fails to capture the small-scale structures, which ex-
plains why psfent still performs better in that case.

Although we emphasise the improvement of psfent

over the other two methods, it is important to note at this
point that the main improvement here is not from the spe-
cific type of functional form (or un-parametrised model) one
uses, but rather, the use of either realistic simulations or cal-
ibration data to inform the prior PDFs for the flexible model
parameters. We chose pixelated maps for use in psfent be-
cause we learned from simulations that the PSF patterns are
complicated and requiring a very flexible model. One can
imagine, for example, an alternative method with the same
spirit, where a basis of high-order polynomials are used to
reconstruct the PSF variations with coefficients constrained
by priors derived from simulations.

c� 2011 RAS, MNRAS 000, 1–15

  

Image Credit: Chang et. al. 2012 Image Credit: Mohammadjavad Valkili 

•  The!literature!is!full!of!poten;al!new!methods!that!can!overcome!
some!of!the!current!limita;ons.!

•  Have!yet!to!be!fully!vePed!with!real!data.!
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Hierarchical probabilistic inference of cosmic shear 3

TABLE 1
Sampling parameters for the full statistical model. The

central line separates sampled from conditional
parameters.

Parameter Description
✓ Cosmological parameters
 s 2D lens potential (given source photo-z bin s)
⇧i PSF in epoch i
⌦i Observing conditions in epoch i

{!n} Galaxy model parameters; n = 1, . . . , n
gal

{↵n} Parameters for the distribution of {!n}
{⇠n} Scaling parameters for {!n}
m, ⌧ Hyperprior parameters for {⇠n}
A Hyperparameter for {↵n} classifications

{dn} Pixel data for galaxies n = 1, . . . , n
gal

G
0

|a⌘ Prior specification for {↵n}
s Source sample (e.g., photo-z bin)
W Survey window function

d
anc,i Ancillary data for PSF in epoch i
p Prior params. for observing conditions
a Prior params. for A
�
pix

Pixel noise r.m.s.
I Model selection assumptions

2. PART 1: DESCRIPTION OF THE STATISTICAL
FRAMEWORK

2.1. Three conditionally independent branches

We begin this section by enumerating the variables
and dependencies of a complete statistical framework for
shear inference. In subsequent sections we demonstrate
the inference of a subset of the variables in our frame-
work with numerical models. We defer a more detailed
examination of some aspects of the statistical framework
to later publications. But we believe it is useful at this
stage to list all contributions to the cosmic shear infer-
ence problem given the considerable literature on the
subject that has not yet converged on a unified statis-
tical picture.

2.1.1. Lensing mass distribution

We start by specifying the parameters ✓ of the cosmo-
logical model, sampled from a prior distribution Pr(✓)
given all past cosmological experiments. Although not
explicitly implemented in this paper, we expect ✓ to in-
clude parameters such as the mean mass density ⌦

m

and
the r.m.s. of mass density fluctuations �

8

that primarily
determine the amplitude of the cosmic shear correlation
function.
From these parameters, we can predict the 3D cosmo-

logical mass distribution, described by the 3D gravita-
tional lensing potential  . Assuming, for example, Gaus-
sian initial conditions  initial for the 3D mass density in
the early universe and gravitational evolution according
to General Relativity, the probability distribution for the
late-time 3D mass density  responsible for gravitational
lensing of galaxies depends only on the cosmological pa-
rameters and the initial conditions, Pr( |✓, initial). We
discuss possibilities for inferring constraints on  in Sec-
tion 2.2.1.0 but otherwise confine our analyses to the
inference of gravitational lensing quantities after project-
ing the 3D gravitational potential  over the line-of-sight
distribution of lenses in a survey.
We define the 2D lensing potential that describes the

shearing (and magnification) of any sample of galaxies

Fig. 1.— Probabilistic graphical model for our complete frame-
work for shear inference. Arrows indicate statistical dependencies.
Grey shading indicates quantities that are not sampled. For the
lens potential  we include only the dependencies in the marginal
distributions after integrating out the line-of-sight distribution un-
certainties contributing to the lens potential.

in a survey by the following integral of the 3D potential
 (see, e.g., equation 6.14 of Bartelmann & Schneider
2001) (also section 3.2 of Narayan & Bartelmann 1996),

 ̄
s

(x) ⌘ W (x)

Z
da (x, a)K(a;A

s

), (1)

where a is the cosmological scale factor in the Freidmann
equation, x are the coordinates in the plane of the sky,
W (x) is the angular window function of the survey, the
subscript s denotes a particular sample of ‘source’ galax-
ies that are lensed by the foreground potential  , and K
is the lensing kernel including the lensing e�ciency based
on the distances between observer, lens, and sources, and
the integral over the source distribution with parameters
A

s

(see equation 6.19 of Bartelmann & Schneider 2001).
The parameters A

s

can include the uncertainties in
the survey redshift distribution (e.g., from photometric
redshift errors, see Loh & Spillar 1986; Connolly et al.
1995; Huterer et al. 2006) as well as other astrophysical
systematics that are redshift-dependent (such as intrinsic
alignments of galaxies, see Catelan et al. 2001; Bridle &
King 2007). Marginalizing the nuisance parameters in
the line-of-sight projection, the 2D lensing potential  
given the cosmology and survey sample is distributed
according to,

Pr( 
s

|✓, s,W ) /
Z

d Pr( |✓)

⇥
Z

dA
s

Pr( 
s

| , A
s

,W )Pr(A
s

|✓, s,W ). (2)

For a deterministic cosmological model (as empha-
sized in Jasche & Wandelt 2013), Pr( | , A,W ) /

PSF Parameters 

The$Truth?$

•  How!do!you!characterize!the!
uncertainty!in!your!es;mate!of!
the!PSF?!!Can!you!predict!the!
posterior!and!marginalize!for!
science?!!

•  This!will!depend!on!how!well!
your!basis!set!can!model!the!
PSF.!

•  Quite!a!bit!of!recent!work!in!this!
area!(see!Schneider!et!al.!2014)!

•  Need!to!consider!computa;onal!
feasibility.!!

Image Credit: Schneider et. al. 2014 

Probablistic graphical model of  
shear inference 



PACCD Meeting, December 4-5 2014, BNL 

DES$Science$Verifica.on$Data$Science Verification (SV): Nov 12-Feb 13

~200 sq. deg. at nominal DES depth
~10 million galaxies
Data processed and released in Aug 13

!
•  ~200!sq.!deg!total!
•  ~10!million!galaxies!
•  Large!con;guous!

region!to!depth!of!~24!
in!griz!

!
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PSF$Characteris.cs$

•  Seeing!larger!than!expected,!but!has!significantly!improved!
•  Ellip;city!quite!small!!
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PSF$Model$$

•  We!use!PSFex!wriPen!by!E.!Ber;n!to!model!the!PSF.!
•  Use!an!independent!reduc;on!from!general!processing!
•  Each!CCD!is!modeled!independently!

–  Input!stars!are!selected!using!automated!algorithm!in!size!vs.!
mag!plane.!

–  Remove!brightest!3!magnitudes!to!reduce!brighterKfaPer!effect.!
–  Excise!regions!with!known!problems.!
–  Pixel!basis!with!2x!oversampling.!
–  Use!13!arcsec!cutouts!of!stars!to!avoid!trunca;on.!
–  Interpola;on!uses!2nd!order!polynomial!over!CCD!to!describe!
spa;al!varia;on.!
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Residual$Sta.s.cs$

•  Sufficient!number!of!stars!
–  Median!~100!/!CCD!

•  Ellip;city!residuals!have!RMS!of!1.7%!

Image Credit: Mike Jarvis 
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Size$Residuals$as$a$func.on$of$Magnitude$

•  Devia;ons!below!the!requirements!for!SV!data!
–  Requirements!shown!for!1”!seeing!

!
!

Image Credit: Mike Jarvis 

SV requirement 

5 year requirement 

SV requirement 

5 year requirement 
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Residuals$as$a$func.on$of$chip$posi.on$

•  Devia;ons!as!expected!and!below!the!requirements!

Image Credit: Mike Jarvis 
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Residuals$over$Focal$Plane$

Image Credit: Mike Jarvis 
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Residual$Correla.on$func.on$

•  Correla;on!of!residuals!for!a!singleKband!
–  Bands!show!cosmic!shear!requirements!!
–  Reduced!even!further!if!you!combine!data!from!different!filters.!

Residual – Residual Correlation for z-band 

Image Credit: Mike Jarvis 
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Principal$Component$Analysis$

•  Performed!a!Principal!Component!Analysis!from!the!same!
data!to!look!for!common!paPerns!across!the!focal!plane!

•  Purely!empirical!model!that!solves!for!shapelet!coefficients!in!
cells!over!each!exposure.!

•  Could!poten;ally!use!to!diagnose!telescope!problems?!
!
Majority!of!varia;on!due!to!first!
few!principal!components:!
seeing,!constant!ellip;city!!
!
Long!tail!due!to!atmosphere?!!
!
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Principal$Component$Comparison$

•  Comparison!of!whisker!paPern!shows!similari;es!for!;lt!

Principal Component Calculation of tilt 

Image Credit: Steve Kent 
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Principal$Component$Comparison$

•  Comparison!of!whisker!paPern!shows!similari;es!for!decenter!

Calculation of decenter 

Image Credit: Steve Kent 

Principal Component 
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Beyond$an$Empirical$PCA$

•  The!PCA!did!not!show!an!improvement!over!simple!
polynomial!fit.!!

•  Did!not!see!anything!significant!correla;on!between!PC!and!
telescope!measurements.!!

•  Can!probably!do!bePer!using!informa;on!from!wavefront!
sensors.!
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Using$Wavefront$Sensors$

•  Aaron!Roodman!and!Chris!
Davis!have!been!working!
on!wavefront!models!for!
the!ac;ve!op;cs!system.!

•  Fit!of!PSF!stars!using!
wavefront!model.!

•  Hope!to!combine!this!
with!other!methods!in!the!
future.!

Image Credit: Aaron Roodman 
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Conclusions$

•  Many!interes;ng!areas!for!improvement!of!PSF!modeling!
–  Combining!op;cal!and!atmospheric!components!
–  Probabilis;c!PSFs!
–  New!interpola;on!methods!

!
•  PSF!modeling!for!DES!Science!Verifica;on!is!in!good!shape!

–  Simple!model/CCD!works!well!
–  Close!to!mee;ng!requirements!for!5!year!data!
–  Working!to!incorporate!addi;onal!features!in!the!model!
–  Currently!using!these!models!to!ensure!accurate!galaxy!shapes!
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Backup$


